LEIBNIZ-INFORMATIONSZENTRUM ' :./
TECHNIK UND NATURWISSENSCHAFTEN -
UNIVERSITATSBIBLIOTHEK

NLPContributions: An Annotation Scheme for
Machine Reading of Scholarly Contributions in
Natural Language Processing Literature

Jennifer D’'Souza and Séren Auer

Technische Informationsbibliothek (TIB)
Welfengarten 1B // 30167 Hannover

= .
Leibniz
Gemeinschaft



What if ...

e The global scientific knowledge base would be more than a document repository
e Scientific information and knowledge would be FAIR also for machines
o The FAIR data principles are a set of guiding principles in order to make scientific data findable,
accessible, interoperable, and reusable in the current digital ecosystem (Wilkinson et al. 2016)
e Currently
O  Findability could be better
O Assuming OA, accessibility is OK
O Interoperability and Reusability is non-existent
e The problem: The scholarly communications format is stuck in the last century

O We have managed to digitize documents that used to be in print

O While other areas have seen a transformative digitalization




Our Objective

e To foster the digitalization of digitized scholarly articles
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Our Objective

e To structure, in a fine-grained manner, knowledge elements from unstructured
scholarly articles as a Knowledge Graph
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Our Objective

e Contributions Scholarly Knowledge. Structured.
o Focus on structuring only contributions from natural language
processing (NLP) articles

e Devise an annotation methodology: NLPContributions
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Our Goals

Two-fold:
1. perform a pilot annotation exercise to find a systematic set of patterns of
subject-predicate-object statements for the semantic structuring of scholarly

contributions that are more or less generically applicable for NLP articles;

2. ingest the resulting pilot annotated data into the Open Research Knowledge
Graph (ORKG) infrastructure as a showcase to automatically process the
digitalized scholarly contribution knowledge elements.

o The ORKG' is a next-generation digital library infrastructure for

machine-actionable knowledge content in scholarly articles.

Reference:
1. Jaradeh, Mohamad Yaser, et al. "Open research knowledge graph: next generation infrastructure for semantic scholarly knowledge." Proceedings of the 10th International

Conference on Knowledge Capture. 2019.
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NLPContributions Model: Characteristics ‘ TIB

e Designed for building a knowledge graph
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NLPContributions Model: Characteristics

e Designed for building a knowledge graph

e Not ontologized
o assumes a bottom-up data-driven design toward ontology discovery

e Has a core skeleton model for top-level knowledge systematization.
o a root node called Contribution,
o eight first level nodes representing core information units under which
the scholarly contributions data is organized
m inspired from sectional information organization in scholarly
articles

’ TIB
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NLPContributions Model: Core Skeleton ’ TIB

Root Node

Contribution

Research Approach Experimental Ablation Baselines
Problem PP Setup Analysis

Eight Information Units
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NLPContributions Model: 8 Information Units ’ TIB

e Inspired from sectional information organization in scholarly articles

1. ResearchProblem

2. Approach

3. ExperimentalSetup
4. Results

5. Tasks

6. Experiments
7. AblationAnalysis

8. Baselines
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NLPContributions Model: 8 Information Units

e Inspired from sectional information organization in scholarly articles

1. ResearchProblem

research challenge addressed by a contribution

connected to root by predicate hasResearchProblem

E.g., from paper about BioBERT word embeddings, their research
problem is ‘domain-customization of BERT’

typically found in an article’s Title, Abstract and first few paragraphs of

the Introduction

’ TIB
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NLPContributions Model: 8 Information Units ’ TIB

e Inspired from sectional information organization in scholarly articles

1. ResearchProblem

o research challenge addressed by a contribution

e connected to root by predicate hasResearchProblem

o E.g., from paper about BioBERT word embeddings, their research
problem is ‘domain-customization of BERT’

o typically found in an article’s Title, Abstract and first few paragraphs of
the Introduction

e involves annotating one or more sentences and precisely the

research problem phrase boundaries in the sentences

25 of 89
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e Inspired from sectional information organization in scholarly articles
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NLPContributions Model: 8 Information Units ’ TIB

e Inspired from sectional information organization in scholarly articles

2. Approach

¢ solution proposed for the research problem

e connected to root by predicate has

o alternatively called Model or Method or Architecture or System or
Application

o typically found in the article’s Introduction section in the context of cue
phrases such as “we take the approach,” “we propose the model,”
“our system architecture,” or “the method proposed in this paper.”

o exception: the first few lines within the main system description

content in the article

29 of 89



NLPContributions Model: 8 Information Units

Inspired from sectional information organization in scholarly articles

3. ExperimentalSetup

details about the platform including both hardware (e.g., GPU) and
software (e.g., Tensorflow library) for implementing the machine
learning solution; and of variables, that determine the network
structure (e.g., number of hidden units) and how the network is
trained (e.g., learning rate), for tuning the software to the task

objective

’ TIB
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NLPContributions Model: 8 Information Units

Inspired from sectional information organization in scholarly articles

3. ExperimentalSetup

details about the platform including both hardware (e.g., GPU) and
software (e.g., Tensorflow library) for implementing the machine
learning solution; and of variables, that determine the network
structure (e.g., number of hidden units) and how the network is
trained (e.g., learning rate), for tuning the software to the task
objective

connected to root by predicate has

found in the sections called Experiment, Experimental Setup,

Implementation, Hyperparameters, or Training

’ TIB
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NLPContributions Model: 8 Information Units ’ TIB

e Inspired from sectional information organization in scholarly articles

4. Results

e main findings or outcomes reported in the article for the research

problem
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NLPContributions Model: 8 Information Units ’ TIB

e Inspired from sectional information organization in scholarly articles

4. Results

e main findings or outcomes reported in the article for the research
problem
e connected to root by predicate has
o found in an article’s Results, Experiments, or Tasks sections
o Wwhile the results are often highlighted in the Introduction, unlike
the Approach unit, in this case, we annotate the dedicated,
detailed section on Results because results constitute a primary

aspect of the contribution.
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NLPContributions Model: 8 Information Units ’ TIB

e Inspired from sectional information organization in scholarly articles

5. Tasks

o the Approach, particularly in multi-task settings, are tested on more

than one task, in which case, all the experimental tasks are listed
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NLPContributions Model: 8 Information Units

e Inspired from sectional information organization in scholarly articles

5. Tasks

o the Approach, particularly in multi-task settings, are tested on more
than one task, in which case, all the experimental tasks are listed
e connected to root by predicate has
e is an encapsulating information unit
o can include one or more of the ExperimentalSetup,

Hyperparameters, and Results as sub information units

’ TIB
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NLPContributions Model: 8 Information Units

Inspired from sectional information organization in scholarly articles

1.

ResearchProblem
Approach
ExperimentalSetup
Results

Tasks
Experiments

AblationAnalysis

Baselines

L
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NLPContributions Model: 8 Information Units ’ TIB

e Inspired from sectional information organization in scholarly articles

6. Experiments

e is an encapsulating information unit
o can be a combination of ExperimentalSetup and Results; or lists of
Tasks and their Results; or Approach, ExperimentalSetup and

Results combined
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NLPContributions Model: 8 Information Units ’ TIB

e Inspired from sectional information organization in scholarly articles

6. Experiments

e is an encapsulating information unit
o can be a combination of ExperimentalSetup and Results; or lists of
Tasks and their Results; or Approach, ExperimentalSetup and
Results combined
¢ particularly relevant in the content of multitask systems such as BERT
o modeling ExperimentalSetup with Results or Tasks with Results is
necessary in such systems since the experimental setup often

changes per task producing a different set of results

41 of 89



NLPContributions Model: 8 Information Units ’ TIB

e Inspired from sectional information organization in scholarly articles

7. AblationAnalysis

¢ describes the performance of components in systems
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e Inspired from sectional information organization in scholarly articles

7. AblationAnalysis

¢ describes the performance of components in systems
o a form of the results which are relevant to a Contribution
o typically found in sections with Ablation in the title, otherwise also in

the running text
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e Inspired from sectional information organization in scholarly articles

8. Baselines

o allist of systems that a proposed approach is compared against
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NLPContributions Model: 8 Information Units ’ TIB

e Inspired from sectional information organization in scholarly articles

8. Baselines

o allist of systems that a proposed approach is compared against
o a form of the results which are relevant to a Contribution
o typically found in sections with Baseline in the title, otherwise also in

the running text
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NLPContributions Model: 8 Information Units ’ TIB

Contribution

Research Approach Experimental Ablation Baselines
Problem PP Setup Analysis
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NLPContributions Model: Data Elements ’ TIB

Contribution

Research Approach Experimental Ablation Baselines
Problem PP Setup Analysis
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How to: Knowledge Graph building from Unstructured Text ’ TIB

e Given a paragraph(s) of unstructured text
o identify the elements to model:
m depends on:
1. if the knowledge graph has an overarching knowledge
theme
2. or, if the knowledge nodes are to be of a certain type
(e.q., scientific entities)
m 1 subsumes 2
o For 1 (our contributions-themed model):
m identify the sentences that reflect the theme
m identify the knowledge entities and predicates from the
sentence of interest to the knowledge theme (e.g., scientific
entities)
m create subject-predicate-object triples toward RDFized KGs
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NLPContributions Model: Data Elements ‘ TIB
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NLPContributions Model: Data Elements ’ TIB

e Contribution Sentences
o select candidate contribution sentences under each of the aforementioned
3 or more applicable information units (viz., ResearchProblem, Approach,

Results, AblationAnalysis, etc.).
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NLPContributions Model: Data Elements ’ TIB

e Contribution Sentences
o select candidate contribution sentences under each of the aforementioned
3 or more applicable information units (viz., ResearchProblem, Approach,
Results, AblationAnalysis, etc.).
e Scientific Term and Predicate Phrases as Knowledge Entities (Graph
Nodes)
o select phrases with an implicit understanding of whether they take the

subject, predicate, or object roles in a per-triple context
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NLPContributions Model: Data Elements ’ TIB

e Contribution Sentences

o select candidate contribution sentences under each of the aforementioned

3 or more applicable information units (viz., ResearchProblem, Approach,
Results, AblationAnalysis, etc.).

e Scientific Term and Predicate Phrases as Knowledge Entities (Graph

Nodes)

o select phrases with an implicit understanding of whether they take the

subject, predicate, or object roles in a per-triple context

e Create Triples in Contribution Sequences

o relating phrases in subject, predicate, and object roles within triples

o creating contribution sequences by using an object in one triple as the

subject in another triple

54 of 89



NLPContributions Model: Data Elements ’ TIB

Next: Example modeling data elements under an information unit
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TIB

NLPContributions Model: Approach Data Elements

{
"has" : {
"Approach" : {
"converting questions" : {

"to (un-interpretable) vectorial representations” : {
"which require" : "no pre-defined grammars or lexicons",
“"can query" : {

"any KB" : {
"independent of" : "schema"
}

}

}s

"from sentence"” : "In this paper, we instead take the
approach of converting questions to (un-interpretable)
vectorial representations which require no pre-defined
grammars or lexicons and can query any KB independent of
its schema."

}
}
}
}
Reference: Bordes, Antoine, Jason Weston, and Nicolas Usunier. "Open question answering with weakly supervised embedding models." Joint European 56 of 89

conference on machine learning and knowledge discovery in databases. Springer, Berlin, Heidelberg, 2014.



TIB

NLPContributions Model: ExperimentalSetup Data

Elements {
"has" : {
"Experimental setup" : {
"used" : |
{
"BERTBase model™ : {
"pre-trained for" : "1M steps”,
"pre-trained on" : ["English Wikipedia",
"BooksCorpus™ |
I
"from sentence” : "We used the BERTBASE model
pre-trained on English Wikipedia and
BooksCorpus for 1M steps.”
¥
{
"NVIDIA V100 (32GB) GPUs" : {
"used" : {
"eight" : {
"for" : "pre-training"
}
b
"from sentence” : "We used eight NVIDIA V100
(32GB) GPUs for the pre-training.”
¥
}
]
}
}
¥

57 of 89
Reference: Lee, Jinhyuk, et al.

"BioBERT: a pre-trained biomedical language representation model for biomedical text mining." Bioinformatics 36.4 (2020): 1234-1240.



NLPContributions Model: Result Data Elements

{
"CoNLL test set" : {
o > {
g -l |
"Fl-score" : "91.57%"
}
}s
"from sentence” : "For NER (Table 7), S-LSTM
gives an Fl-score of 91.57% on the CoNLL
test set, which is significantly better
compared with BiLSTMs."
}
}

Reference: zhang, Yue, Qi Liu, and Linfeng Song. "Sentence-State LSTM for Text Representation." Proceedings of the 56th Annual Meeting of the Association 58 of 89
for Computational Linguistics (Volume 1: Long Papers). 2018.
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NLPContributions Annotation Guidelines ’ TIB

Three of Twelve Guidelines:
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NLPContributions Annotation Guidelines ’ TIB

Three of Twelve Guidelines:

1. How are information unit names selected? or conversely, Which of the eight
information units does the sentence belong to?

o applied name is the one selected based on the closest section title or cue
phrase

2. Inferring Predicates
o from running text or from the closed class set {*has”,

L1

value”, “has description”, “based on”, “called”}

On"7 “by”’ “for”7 “haS
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NLPContributions Annotation Guidelines ’ TIB

Three of Twelve Guidelines:

1. How are information unit names selected? or conversely, Which of the eight
information units does the sentence belong to?

o applied name is the one selected based on the closest section title or cue
phrase

2. Inferring Predicates
o from running text or from the closed class set {*has”,

L1

value”, “has description”, “based on”, “called”}

On"7 “by”’ “for”7 “haS

3. How are lists modeled within contribution sequences?
o listitems are treated just as sentences

64 of 89
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Pilot Annotated Dataset ’ TIB

e Dataset

o A  collection of  scholarly articles downloaded from
https://paperswithcode.com/

m represents papers in Al at large
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Pilot Annotated Dataset ’ TIB

e Dataset

o A collection of  scholarly articles downloaded from
https://paperswithcode.com/

m represents papers in Al at large
o Randomly selected 50 NLP papers
m Aim: create a representative dataset

m select a distribution of 10 papers across five different NLP
research tasks:

e machine translation, named entity recognition, question answering,
relation classification, and text classification.
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Pilot Annotated Dataset

e Dataset

o A collection of  scholarly articles downloaded from
https://paperswithcode.com/

m represents papers in Al at large
o Randomly selected 50 NLP papers
m Aim: create a representative dataset

m select a distribution of 10 papers across five different NLP
research tasks:

e machine translation, named entity recognition, question answering,
relation classification, and text classification.

e Annotation Tools

o https://jsoneditoronline.org/ - For JSON syntax checks

o https://www.orkg.org/ - As a litmus test for contributions-themed KG

and as the Digital Library infrastructure to populate with the annotated
KGs

’ TIB
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Pilot Annotated Dataset Characteristics ’ TiB

e Total of 2631 triples (avg. of 52 triples per article)

e Data elements: 1033 unique subjects, 843 unique predicates, and 2182
unique objects
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Pilot Annotated Dataset Characteristics

Total of 2631 triples (avg. of 52 triples per article)

Data elements: 1033 unique subjects, 843 unique predicates, and 2182

unique objects

MT NER QA RC TC
Subject 259 209 203 228 221
Predicate 243 220 187 201 252
Object 471 434 515 455 459
Total 502 473 497 544 504

MT: machine translation; NER: named entity recognition;
QA: question answering; RC: relation classification; TC:

text classification

L
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Pilot Annotated Dataset Characteristics ’ TIB

e Total of 2631 triples (avg. of 52 triples per article)

e Data elements: 1033 unique subjects, 843 unique predicates, and 2182
unique objects

MT NER QA RC TC
Subject 259 209 203 228 221
Predicate 243 220 187 201 252

[ Object 471 434 515 455 459 ]
Total 502 473 497 544 504

MT: machine translation; NER: named entity recognition;
QA: question answering; RC: relation classification; TC:
text classification
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Pilot Annotated Dataset Characteristics

Total of 2631 triples (avg. of 52 triples per article)

Data elements: 1033 unique subjects, 843 unique predicates, and 2182

unique objects

.
MT NER QA RC TC
Subject 259 209 203 228 221
Predicate 243 220 187 201 252
Object 471 434 515 455 459
Total 502 473 497 544 504

MT: machine translation; NER: named entity recognition;
QA: question answering; RC: relation classification; TC:

text classification

L
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Pilot Annotated Dataset Characteristics

Total of 2631 triples (avg. of 52 triples per article)

Data elements: 1033 unique subjects, 843 unique predicates, and 2182

unique objects

SR
MT NER QA RC TC
Subject 259 209 203 228 221
Predicate 243 220 187 201 252
Object 471 434 515 455 459
Total 502 473 497 544 504

—__/
MT: machine translation; NER: named entity recognition;
QA: question answering; RC: relation classification; TC:

text classification

L
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Pilot Annotated Dataset Characteristics ’ TIB

e Total of 2631 triples (avg. of 52 triples per article)

e Data elements: 1033 unique subjects, 843 unique predicates, and 2182
unique objects

MT NER QA RC TC

Subject 259 209 203 228 221

[ Predicate 243 220 187 201 252 ]
Object 471 434 515 455 459
Total 502 473 497 544 504

MT: machine translation; NER: named entity recognition;
QA: question answering; RC: relation classification; TC:
text classification
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Pilot Annotated Dataset Characteristics ’ TIB

e Total of 2631 triples (avg. of 52 triples per article)

e Data elements: 1033 unique subjects, 843 unique predicates, and 2182
unique objects
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A bstract

Dependency trees help relation extraction
models capture long-range relations between
words. However, existing dependency-based
models either neglect crucial information (e.g.,
negation) by pruning the dependency trees
too aggressively, or are computationally nef-
ficient because it is difficult to parallelize over
different tree structures. We propose an ex-
tension of graph convolutional networks that
is tailored for relation extraction, which pools
information over arbitrary dependency struc-
tures efficiently in parallel. To incorporate rel-
evant information while maximally removing
irelevant content, we further apply a novel
pruning strategy to the input trees by keeping
words immediately around the shortest path
between the two entities among which a rela-
tion might hold. The resulting model achieves
state-of-the-art performance on the large-scale
TACRED dataset, outperforming existing se-
quence and dependency-based neural models.
We also show through detailed analysis that
this model has complementary strengths to se-
quence models, and combining them further
improves the state of the art.
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Plan for the Talk

e NLPContributions Model

e The NLPContributions Annotation Guidelines

e Pilot Annotated Dataset Characteristics




Conclusion: Takeaways ’ TiB

e Scholarly work can be realized as expressions other than an article

o We proposed the NLPContributions annotation model to create contributions-themed
knowledge graphs
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Conclusion: Takeaways ’ TiB

e Scholarly work can be realized as expressions other than an article

o We proposed the NLPContributions annotation model to create contributions-themed
knowledge graphs
e In a pilot annotation exercise we have annotated 50 articles by the NLPContributions
scheme as a practical demonstration of feasibility of the annotation task
o Available online at https://doi.orq/10.25835/0019761
e The NLPContributions annotation scheme can be leveraged to annotate a larger dataset

(of a few hundreds of articles)
o Train machine-learning-based automated machine readers to annotate tens of thousands of

articles for contributions-based KG data which is humanly impossible to do
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